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Quasiperiodicity and a spin-dependent Kronig-Penney 
model 

S J Blundell 
Clarendon Laboratory. Parks Road, Oxford OX1 3PU, UK 

Received 10 August 1994 

Abstract. Using a vansfer matrix method, the band structure is calculated for a spin-dependent 
generalization of the Kronig-Penney model which consists of a one-dimensional m y  of delta 
function polentials whose strengths depend on the relalive orientation of the electron spin and a 
vector located at each delta function site, the direction of which is helically modulated. This is 
compared with a spin-independent Kronig-Penney model in which only the amplitude of each 
delta function is modulated. The period of the modulation can be incommensurate with the 
periodicity of the delta function array. The fractal nature of the band stmcture in the spin- 
independent case is shown to be quenched by the additional symmetry in the spin-dependent 
model. 

1. Introduction 

Quasiperiodic systems lie between the extremes of perfect crystalline order and amorphous 
disorder. These have become of particular interest since the discovery of a quasicrystalline 
phase (locally exhibiting fivefold symmetry) in metallic alloys 11, 21. Much theoretical 
work has been concerned with modelling the transition from periodic to aperiodic order 
in the ‘Fibonacci superlattice’ [3, 4, 5, 61 in which the potential energy of an electron at 
successive sites on a one-dimensional array is positive or negative according to a Fibonacci 
sequence. Such systems may now have physical realizations in the form of epitaxially 
grown semiconductor superlattices [7, SI. 

Another important example of quasiperiodic systems is the class of almost periodic 
crystals in which the band structure is determined by two periodic functions which are 
incommensurate with each other [9, IO]. If the ratio between the two periods is rational, the 
‘unit-cell’ size can be much larger than that determined by either of the periodicities acting 
individually, producing many gaps in the band structure. If the ratio of the two periods is 
irrational, any periodicity is entirely lost, although it can be formally recovered in higher 
dimensions [ l l ,  91. 

Examples of incommensurate systems include crystals with spin density waves or charge 
density waves (where the two periods are the lattice spacing and  ilk^), and also in certain 
mercury chain compounds [I21 and some organic superconductors [13]. The problem of 
Bloch electrons on a square lattice in a magnetic field is another example 114, 151 where 
the two periods are proportional to the flux quantum and the flux through a plaquette. 

I t  is convenient to study quasiperiodicity in all its forms through simple one-dimensional 
models; tight-binding and Kronig-Penney models have been particularly popular since they 
admit a simple transfer matrix description. In this paper, a spin-dependent generalization of 
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the Krooig-Penney model is studied and compared with a corresponding spin-independent 
model. The fractal nature of the band structure in the spin-independent case is shown to be 
quenched by the additional symmetry in the spin-dependent model. 

The paper is organized as follows: in section 2, a number of introductory remarks 
are made concerning the approach to modelling quasiperiodic systems; section 3 outlines 
the application of transfer matrices to the spin-independent Kronig-Penney model; section 
4 contains a description of the quasiperiodic modulations which can be made to it and 
also introduces the transfer matrix solution to the corresponding spin-dependent model; the 
results are discussed in section 5. 

2. Modelling quasiperiodicity i n  one dimension 

An important class of almost-periodic models is based on the discrete Schrodinger equation, 
describing electrons in the tight-binding approximation, and is given by 

(1) 

where @j is the wave function at site j, E is the total energy, B is some constant phase, h 
is a coupling constant, and @ controls the frequency of the almost-periodic variation [16]. 
This is known as the ulmost-Muthieu operator, because of its similarity with the Mathieu 
operator [17]. 

An interesting duality has been observed in this system [18]: the discrete Fourier 
transform of the wave function at each site (rCI,) also satisfies an equation of the same 
form as equation (1) except that it is necessary to replace h by l l h .  Since these two 
representations of the wave function are Fourier transforms of each other, when a state i n  
one representation is localized, it must be extended in the other. Therefore, when h = 1, 
at the fixed point of this duality transformation, a metal-insulator transition in this model 
is predicted [lS]. 

The problem of the Bloch electron on a two-dimensional square lattice in a magnetic 
field, described by the Harper equation [ 19, 201. is in fact identical to the almost-Muthieu 
equution when A = 1. Hence the spectrum of the latter, at A = 1. exactly at the ‘metal- 
insulator transition’, is a Hofstadter butterfly [20, 211. At values of h less than this, the 
butterfly becomes altered, broadening out until A = 0, at which point the potential is ‘free- 
electron-like’-i.e. there are no gaps. The magnetic flux q5 in units of h / e  plays the rgle 
of the modulation @ in the almost-Mathieu equation (equation (1)). which is why they are 
denoted by the same symbol. Because the spectrum depends on three variables (the energy 
E. the modulation @, and the modulation strength k), the entire spectrum can be conveniently 
visualized with the aid of figure 1 which shows the bands (black) and gaps (white) of a 
portion of this model. The front face (A = I )  of this ‘Hofstadter cube’ shows part of the 
Hofstadter butterfly. The ‘fractal’ structure seen in this model is characteristic of problems 
which sensitively depend on the value of the integers p and q in the parameter q5 = p/q .  An 
extremely simple way in which to observe quasiperiodic behaviour is through the Kronig- 
Penney model. This has a natural periodicity (determined by the spacing between the 
delta functions) but an artificial periodicity may be added by modulating the strength of 
the delta functions with a different periodicity. For example, if the strengths of the delta 
function potentials in a Kronig-Penney model with period d are sinusoidally modulated with 
a period md along the y-axis, where m is an integer, then the unit cell grows by a factor 
m, introducing extra band gaps into the energy spectrum. If m is irrational, the unit cell is 
effectively infinite in size, and the energy spectrum has infinitely many gaps; i t  becomes a 

1 kq, = E $ , -  -[qj+] + q j . j - 1 ~ + h c o s ( 2 ~ j ~ + e ) ~ j  
’ - 2  
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Figure 1. The Hofstadter cube (the spectrum of the almost-Mathieu model). The front face 
shows a gonion of the Hofstadm buttemy (A = I ) .  

Cantor set 19, 161. 

the amplitude-modulated (AM) Kronig-Penney model 
It is straightforward to show that the almost-Mathieu equation (1) can be mapped on to 

g c o s ( h . i 6 + 8 ) s ( y -  j d )  w y )  = E W )  (2) 1 d? m 

[-dyz - j,-- 
(where g is the stren-4 of the amplitude modulation, E is the energy, and units are chosen 
so that h2/2m = I )  by the transformation [22] 

E = 2 c o s &  (3) 

In this way the AM Kronig-Penney model behaves like the almost-Mathieu model with 
an energy-dependent coupling constant. Using a property of the almost-Mathieu equation, 
namely that for irrational 6 (with good diophantine approximation property: i.e., for most 
irrationals), the spectrum is ‘absolutely continuous’ for lhl < 1, and ‘pure point’ for Ih[ z 1, 
it can be shown using equation (4) for which values of g and E the metal-insulator transition 
occurs in the amplitude-modulated Kronig-Penney model 1221. 

In the following sections, the transfer matrix method will be used to calculate band 
structures of spin-independent and spin-dependent Kronig-Penney models which each 
consist of a one-dimensional array of delta function potentials whose strengths can be 
modulated in various ways; transfer makices offer a useful and concise description of 
one-dimensional quantum mechanical problems [23] and can be used conveniently to 
demonstrate the analogy between such problems and other electrical, optical, and condensed 
matter formulations 1241. The Kronig-Penney model is an appropriate choice since it is so 
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closely related to more general periodic potential barriers and also to tight-binding models 
(as demonstrated above) 191. 

Spin-independent Kronig-Penney models can be calculated using standard 2 x 2 transfer 
matrices, but the spin-dependent Kronig-Penney model requires a 4 x 4 transfer matrix 
method [25] for its solution. It turns out that this model is quite different from the spin- 
independent case, in that the quasiperiodicity no longer introduces additional gaps into the 
band structure. The spin dependence of the problem is not important unless the spin of 
the potential is other than always purely parallel or anti-parallel to some fixed direction. 
Therefore, I will particularly concentrate on the distribution of bands and gaps in a helical 
magnetization structure. 

3. Kronig-Penney model 

In figure 2(a), I show a general potential barrier consisting of N regions in each of which 
the potential V ( y )  is constant. If the wave function on the left-hand side of the general 
potential barrier is written as a sum of incident and reflected waves, 

Y < YI ( 5 )  @ ( y )  = e:b + ,.e-ihy 

and the wave function on the right-hand side of the potential barrier is written as a single 
transmitted wave, 

@(y) = te'"" y z yN-1 (6)  
then it may be shown that 17.51 

where 

are the matrices which match @ and d$/dy at the interfaces and 

are the propagation matrices. I now consider the case of the Kronig-Penney model which 
consists of a periodic one-dimensional array of delta function potential barriers spaced a 
distance d apart along the y-axis, and each with strength g, 

It is convenient to consider a delta function potential barrier as the limit of a rectangular 
barrier as its height K~ + kZ grows as K + 00 and its width { shrinks such that K'( is 
constant (figure 2(b)). Using the transfer matrix method, the amplitude of the forward- and 
backward-travelling waves at successive delta functions can be related by 
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Figure 2. (a) A general one-dimensional potential barrier V ( y )  composed of N distinct regions 
in each of which the potential is constant, (b) the Kronig-Penney potential barrier (see text). 
As x -t m with x2C = g, the barriers become delta functions with amplitude g. a, (bj) is the 
amplitude of B lea- (right-) travelling wave. 

= m(k, g ,  d) ( ' j + I )  
bj+~ 

where a, and bj are defined in figure 2(b). To find the bands and gaps in this system, 
it is necessary to find the eigenvalues of the transfer matrix m ( k , g , d ) .  Because 
det(m(k,g,d)) = 1 ,  the product of the two eigenvalues is unity: therefore, if p is an 
eigenvalue of m(k, g, d) ,  so too is l/p; thus the electrons lie in an allowed band if lpl = 1. 
Solutions with lpl # 1 correspond to surface states on a finite chain of the Kronig-Penney 
lattice and lie in the gaps of the infinite system. Hence an allowed (band) solution is found 
when Trm(k, g ,  d )  (which is equal to the sum of the eigenvalues) is e@ + e-'O'' with q 
real. (A forbidden (gap) state is found when Trm(k, g ,  d )  = eod +e-qd with 0 real). Hence 

(12) 

which is the well known band structure of the Kronig-Penney model. This band structure 
is characterized by gaps in the spectrum which appear just above (below) each Brillouin 
zone boundary for positive (negative) g, i.e., for delta function barriers (wells). This band 
structure is shown in figure 3: the abscissa is k d / z  c( (Energy)"* and the ordinate is gd, 
measuring the strength of the delta functions. A point is plotted black if it lies within an 
allowed region (band): it is made white if it lies within a forbidden region (gap). The 
allowed states (bands) are given by ITrm(k, g, d)l < 2. 

1 8 .  cos qd = -Tr m(k, g, d )  = cos kd  + - sin kd  
2 2!i 

4. Modulated Kronig-Penney models 

Quasiperiodic modulations may be made to the spin-independent Kronig-Penney model 
described in section 3. 
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0 1 2 3 4 
k d l x  

Figure 3. The band structure for the Kronig-Penney model. Gaps we found just above (below) 
each Brillouin m n e  boundary for positive (negative) coupling 6 .  A ponion of the periodic 
m y  of delta function banien is shown schernatieally above for comparison with subsequent 
diagram. 

4.1. FM Kronig-Penney model 

Following de Lange and Janssen [26], the spacing between successive delta function barriers 
may be changed so that the position of the j t h  harrier is 

y j  = j d  - Adcos(2irjq5). (13) 

For rational values of the modulation frequency q5 = p / q  ( p  and q relatively prime), the 
allowed states may be found using the condition 

For gd = 3x/2, A d / d  = l / A ,  this structure is shown in figure 4. I call this the 
‘frequency-modulated (FM) Kronig-Penney model’. 

4.2. AM Kroriig-Penney model 

It is also possible to modulate g sinusoidally while keeping d (the spacing between de!ta 
functions) fixed [22]. In this case we have 

gj = go + g cos(Znjq5). 

and find allowed states when 

I call this the ‘amplitude-modulated (AM) Kronig-Penney model’ 
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icd/.rr 
Figure 4. The band structure for the frequency-modulated Kronig-Penney model for gJ = 1 
(left) gd = 3x12 (right) and Ad14 = l/m. The frequency-modulated barriers are depicted 
schematically above; the height (strength) of each barrier remains constant but the distance 
between barriers is modulated with frequency 4, 

4.3. Helically modulated Kronig-Penney model 

I now introduce a spin-dependent generalization of the Kronig-Penney model which consists 
of a one-dimensional array of delta function potentials whose strengths depend on the relative 
orientation of the electron spin and a unit vector located at each delta function whose 
direction is helically modulated. This corresponds to a one-dimensional spin-dependent 
potential V ( y .  a) given by 

V ( y .  a )  = g T~ . u 6 ( y  - j d )  (17) 
I=-m 

where 
s in(2z j6)  

' I = (  cos(2xjq5) ) 
is a vector which precesses around the y-axis as j increases and a is the electron spin. I call 
this the helically modulated (HM) Kronig-Penney model. It is possible to also use a transfer 
matrix approach to calculate the band s t rwure  of this model, but it then becomes necessary 
to use 4 x 4 matrices because of the _ _  . dependence of the potential [25]. Therefore, the 
eigenvalues /i of the transfer matrix in the equation 
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must be found, where 

where 

Hence, 

If @ is rational, it is possible to compute the eigenvalues of this matrix to examine whether 
there are zero, one or two pairs of degenerate eigenmodes. The eigenvalues need to be 
computed directly since there is no condition on the trace of the transfer matrix analogous 
to the one used for the modulated spin-independent Kronig-Penney models. 

5. Results and discussion 

In this section, calculations of the band structure will be presented for both the HM Kronig- 
Penney model and the AM Kronig-Penney model for different values of the modulation @, 
and different potential strengths g. The AM Kronig-Penney model is not spin dependent and 
its potential is tlie component of the HM Kronig-Penney potential resolved in the z-direction 
(i.e.. perpendicular to the y-axis). In figure 5 ,  I show the band structure for the AM Kronig- 
Penney model for modulation @ = 5 3  5, i, and 4. As q increases (4 = p/q). the unit-cell 
size grows larger and the band smcture splits up into a larger number of sub-bands. This 
behaviour is as expected from the arguments of section 1, and is of course reminiscent of 
the fractal nature of the Hofstadter butterfiy to which, as argued in section 2, it is strongly 
related. Each band splits up into q sub-bands, but the gaps between these sub-bands are not 
always of non-zero width (e.g., the cases of @ = 4 or 4). The potential for @ = is the 
same as that of the @ = 4 case but the unit-cell size is doubled. Hence the band structure 
is the same as for the @ = 

For the HM Kronig-Penney model, I will use the following scheme to plot the band 
structure: 

I l l  

case, but with half the Brillouin zone size. 

(i) two pairs of allowed eigenmodes: black; 
(ii) one pair of allowed eigenmodes: grey; 
(iii) no allowed eigenmodes: white. 

In figure 6, I plot the band structure for @ = I .  In this case, electrons kee' a standard 
spin-independent Kronig-Penney potential, either with positive-strength potentials if the 
electrons are spin-up, or with negative-strength potentials if the electrons are spin-down. 
Consequently, the band structure is a superposition of the negative and positive halves of 
figure 3 (thus the portion shaded grey in figure 6 is a solution for eirher negative or positive 
spin, and the portion shaded black is where the solutions for both spin cases overlap). This 
conclusion can be reached by noting that the transfer matrix (equation (20)) in this case is 
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d . =  112 4 = 1 /:I 

g d " . l l l l  10 

n 
1 2 3 4 

40 

30 

20 

10 

n 
1 2 3 4 

gd 

10 

O O  1 

k d J n  
Figure 5. The hand stiuclure for the amplitude-mudulalrd Kronig-Pcnncy modcl for 9 = 
I I?. 113, 1/4 and I /S. Ahove each graph thc an,plitudc~modulared harriers are depicted 
schematically. the height o f  each v e l t i ~ a l  l ine represenring the strrnglh o l  the dcltii function 
potenunl at that  point. 

just il block diagonal sum of the transfer matrix for the spin-independent cases f ix  positive- 
and negative-potential strengths: 

On the left-hand side of figure I ,  I show the band structuse for @ = i. This is equivalent 
to the band Structure for 4 = f in the AM Kronig-Penney model, since electrons see an AM 

Ksonig-Penney potential whether they have spin-up or spin-down. This can be understood 
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Figure 6. The band structure for the helical Kronig-Penney model for 4 = 1. This spin- 
dependent potential is depicted schematically by an array of barriers which are shaded black and 
white: depending on the spin of an eleclron (up=black. down=white far example). the potential 
consists of an array of positive potentials (barriers) or negative potentials (wells). 

Figure 6. The band structure for the helical Kronig-Penney model for 4 = 1. This spin- 
dependent potential is depicted schematically by an array of barriers which are shaded black and 
white: depending on the spin of an eleclron (up=black. down=white far example). the potential 
consists of an array of positive potentials (barriers) or negative potentials (wells). 

by noting that the transfer matrix in this case is given by 

) (22) 
(m@, g, d )  m(k, -g, d )  0 

m(k, -g, d )  m(k. g, d )  0 M(k, g ,  d )  = - 

and the set of eigenvalues of this matrix consists simply of two copies of the eigenvalues of 
m(k, g .  d )  m(k. -g, d )  and thus leads to allowed states of either spin at precisely the same 
energies and potential strengths as seen in the AM Kronig-Penney model for 6 = $. A 
surprise comes when examining the band structure for other values of 6,  On the right-hand 
side of figure 7. I show the band structure for 6 = f .  It is immediately apparent that this 
has not split up into seven sub-bands. At small coupling g ,  there are gaps between regions 
of two pairs of allowed eigenmodes (black) when k d / n  = n + 6  (n an integer). This feature 
is seen even more strikingly if the dependence of the band structure on 6 is examined for 
fixed g (figure 8) for the AM and HM models. For both models, criss-cross gaps are seen at 
k d / n  = n i $b. In the HM model, the four eigenstates are circularly polarized modes, and 
when they possess the same spatial rotation as the helical potential, then they can either 
rotate in the same direction, or in the opposite direction, with differing energy cost. This 
gives rise to the features at k d / x  = n i $b, where n is an integer. However, one pair of 
eigenmodes remain allowed except near 6 = 112 where a gap does open up with increasing 
coupling g. In the AM model, the criss-cross gaps are repeated recursively, giving rise to 
a pattern reminiscent of the Hofstadter butterfly to which the model is related [ZO, 22). As 
the coupling strength is increased in both models, the gaps widen-increasingly so at low 
energy. Yet, the band structure of the HM Kronig-Penney model shows no fractal nature, 
in contrast to the AM case, in which a great deal of fine structure is observed. This is 
due to the fact that the latter model, together with the FM model of section 4.3, breaks the 
translational symmetry of the unmodulated lattice, by increasing the size of the unit cell by 
a factor of q (where $5 = p / q ) .  In the HM model, although the translational symmetry of 

by noting that the transfer matrix in this case is given by 

) (22) 
( m ( k  8 . 4  m(k, - g ,  d )  0 

m(k, -g, d )  m(k. g, d )  
M(k ,  g ,  d )  = - 0 

and the set of eigenvalues of this matrix consists simply of two copies of the eigenvalues of 
m(k, g .  d )  m(k. -g, d )  and thus leads to allowed states of either spin at precisely the same 
energies and potential strengths as seen in the AM Kronig-Penney model for 6 = $. A 
surprise comes when examining the band structure for other values of 6,  On the right-hand 
side of figure 7. I show the band structure for 6 = f .  It is immediately apparent that this 
has not split up into seven sub-bands. At small coupling g ,  there are gaps between regions 
of two pairs of allowed eigenmodes (black) when k d / n  = n + 6  (n an integer). This feature 
is seen even more strikingly if the dependence of the band structure on 6 is examined for 
fixed g (figure 8) for the AM and HM models. For both models, criss-cross gaps are seen at 
k d / n  = n i $b. In the HM model, the four eigenstates are circularly polarized modes, and 
when they possess the same spatial rotation as the helical potential, then they can either 
rotate in the same direction, or in the opposite direction, with differing energy cost. This 
gives rise to the features at k d / x  = n i $b, where n is an integer. However, one pair of 
eigenmodes remain allowed except near 6 = 112 where a gap does open up with increasing 
coupling g. In the AM model, the criss-cross gaps are repeated recursively, giving rise to 
a pattern reminiscent of the Hofstadter butterfly to which the model is related [ZO, 22). As 
the coupling strength is increased in both models, the gaps widen-increasingly so at low 
energy. Yet, the band structure of the HM Kronig-Penney model shows no fractal nature, 
in contrast to the AM case, in which a great deal of fine structure is observed. This is 
due to the fact that the latter model, together with the FM model of section 4.3, breaks the 
translational symmetry of the unmodulated lattice, by increasing the size of the unit cell by 
a factor of q (where $5 = p / q ) .  In the HM model, although the translational symmetry of 
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Figure 7. The helical Krmig-Pmney model for 4 = 112 and 4 = 117. The spin-dependent 
potentials are illustrsled in each case using the scheme of figure 6 :  for Q = 112. an e k t r n n  is 
in a potential which is alternntely positivc and negative: for 4 = 117. the axis o f  quantization 
rotates with B period of seven delta functions. The exncl palential experienced hy each electron 
depends on its spin. 

the unmodulated lattice is broken by the modulation, the operation of translation by d and 
rotation by 2x4 is a symmetry operation which commutes with the Hamiltonian, and so 
an equivalent Bloch theorem can be derived in terms of this operation. A transfer matrix, 
operating over only one delta function period, can be derived independently of q with no 
restriction to rational 4% since the exponent q in equation (20) is superfluous (if a transfer 
matrix AY has m eigenvalues with unit  modulus, so does the matrix A). Thus the fractal 
structure is 'quenched' by the symmetry in this case; despite the geometric quasiperiodicity 
of the potential which in the spin-independent case produces a band structure which is 
related to the Hofstadter butterfly (a fractal). the higher symmetry of the spin-dependent 
case is sufficient to remove that structure completely. 

This can be clearly seen in figure 9 where tlir circle formed by the projection onto the 
x-z plane of the the helical path along which the magnetization vector precesses is squashed 
into an ellipse, and finally a line (representing the spin-dependent version of the amplitude- 
modulated model). In this case, the vector i n  the spin-dependent potential (equation (17)) 
is given by 

p sin(27rj4) 

cos(2rrj@) 
T I = (  0 ) 

where the parameter p is the ratio of the minor and major axes of the ellipse. This is 
illustrated in figure 9 for the modulation 4 = f .  The symrnetry of the helical (circle) 
system is reflected by the absence of many gaps. but as the circle is squashed into an 
ellipse, the gaps appear, increasing in siLe until they are visibly present at all values of the 
barrier potential strength. 

It is also possible to study a model i n  which the magnetization vector precesses around 
the surface of a cone (in the manner of a spin wave), and in this case, the fractal spectrum 



I0294 S J Blundell 

Figure 8. The band structure for the .4M (lefl) and HM (right) Kronig-Penney models for g = I 
(top) and I: = S (bottom). 

is also quenched for precisely the same reason as it  is in the helically modulated model. 
Using this method, it is therefore possible to reproduce the abundant range of magnetic 
structures observed in rare-earth magnetic systems and systematically to examine their band 
structure, albeit in a simplified one-dimensional model. 

6. Summary 

A transfer matrix method has been used to calculate the band structure of a spin-dependent 
generalization of the Kronig-Penney model. This consists of a one-dimensional array of 
delta function potentials whose strengths depend on the relative orientation of the elzctron 
spin and a vector located at each delta function site; the direction of the vector can be 
helically modulated. The HM Kronig-Penney model has been compared with the AM 
Kronig-Penney model in which the strengths of each delta function potential are modulated 
independently of the electron spin. The most important result of this study is that although 
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Figure 9. The quenching of the fractal structure for 6 = I/S.  The spin~dependent potentials 
lie on B helical structure in which the circle, which is traced out by the projection ofthe helical 
path on a plme perpendicular to the axis of the helix. becomes elliptical with minodmajor axis 
ratio p and hence is progressively squashed into U line as p runs from I IO 0. 

the potential of the HM model may not possess translational symmetry if the helical 
modulation frequency is irrational, a combination of a rotation and a translation can commute 
with the Hamiltonian so that the fractal structure observed in the AM Kronig-Penney model 
is quenched. 
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